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Dynamics of the classical Heisenberg spin chaint 

John A G Roberts and Colin J Thompson 
Mathematics Department, University of Melbourne, Parkville, Victoria 3052, Australia 

Received 5 October 1987 

Abstract. In this paper we study the evolution equations for the classical discrete anisotropic 
Heisenberg spin chain. In  the continuum limit these equations become completely 
integrable and are related to well known equations such as the sine-Gordon and non-linear 
Schrodinger equations. Some particular solutions of the discrete equations are presented, 
including spin waves, spatially homogeneous solutions and planar states which provide 
an example of a completely integrable mapping. A linear stability analysis, some numerical 
studies and particular time-dependent solutions suggest that, for certain regions of phase 
space and parameter values, the system possesses chaotic solutions. 

1. Introduction 

There has been considerable interest in recent years in discrete dynamical systems and, 
in particular, whether the diff erential-difference equations describing the evolution of 
such systems are integrable or not (see, for example, Ablowitz and Ladik 1975, 1976). 
In the so-called continuum limit many of the differential-difference equations studied 
to date reduce to well known partial differential equations, such as the Korteweg-de 
Vries equation (Kdv), sine-Gordon equation ( s G ) ,  non-linear Schrodinger equation 
( NLS) and related equations, which have been shown to be completely integrable by 
various methods (see, for example, Ablowitz and Segur 1981). Discretised versions of 
these methods, such as the inverse scattering transform (IST) method, and other more 
direct methods (Quispel er a1 1984) have been used to study certain discrete systems 
but, as in the case of their continuum counterparts, there is, as yet, no systematic 
method of deciding whether a particular set of partial or diff erential-diff erence 
equations is integrable or not. 

Our purpose here is to examine the time evolution of the classical discrete 
anisotropic Heisenberg spin chain and, in particular, to study the question of integrabil- 
ity of the differential-diff erence equations describing the evolution of the system. 

In the following section we derive the equations of motion for the model and 
discuss briefly what is known about these equations and their continuum counterpart. 
In $ 3  we present some particular exact solutions of the equations of motion which 
show that in certain extreme cases the system is integrable. The linearised equations 
of motion are derived and studied in fi 4 and the nature of the stability of these equations 

+This  paper is based in part on a lecture entitled ‘Some nonlinear difference-differential equations in 
statistical mechanics’ presented by C J Thompson at the conference on Mathematical Problems in Statistical 
Mechanics held at Heriot-Watt University on 3-5 August 1987. 

Some of the results reported here were presented earlier by J A G Roberts at the Australian Applied 
Mathematics Conference held at Wairakei, Kew Zealand, 8-1 1 February 1987. 
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is examined in some detail. Some numerical and analytical results are given in § 5 
which strongly suggest that the model in general is not completely integrable. Our 
results are summarised in the final section. 

2. The equations of motion and the continuum limit 

We consider a set of classical three-dimensional vector spins S,  = S,,z, S,,J 
n = 1 , 2 ,  . . . , N, of unit length, with nearest-neighbour interactions only, described by 
the Hamiltonian 

N - 1 V-1 

H = -  (~S,,~Snri,i+PSn,zS,~+i,z+~Sn,3Sn+i.3)=- C S,  JS,+i (2.1) 
n = l  , = I  

where the dot in equation (2.1) denotes the ordinary scalar product and 

J = O  /3 0 .  (2.2) i: : 
The time evolution of the system is described by the set of first-order differential 

equations 

dS,,ldt = { S , ,  H }  (2.3) 
where the curly brackets in (2.3) denote the Poisson bracket. The standard Poisson 
bracket for this problem (Mermin 1964) is defined by 

where E+,, is the usual antisymmetric Levi-Civita tensor. The resulting equations of 
motion are easily shown to be 

dS, ldt  = S,  x J(S,+I + S , - , )  (2.5) 
where the cross in (2.5) denotes the ordinary vector product. 

The equations of motion given by (2.5) also hold for the corresponding quantum 
Heisenberg ( X Y Z )  chain where in this case the components of the S,  are operators. 
The Poisson bracket equation (2.4) is, in fact, designed to agree with the commutation 
relations for these operators so this result is not very surprising. Alternatively, one 
could view the classical equations (2.5) as a spin-to-infinity limit of the corresponding 
quantum equations. 

It should also be pointed out that for a finite chain of N spins one should set 
So = S N + ,  = O  in equation (2.51, whereas for a periodic chain one sets Sn+& = S, .  

In order to take a continuum limit one introduces a lattice spacing a and a spin 
field S(x,  t )  at position x and time t so that when x = nu 

(2.6) S (  nu, t )  = S,  ( t ) .  

Assuming a is small and expanding in a Taylor series we then have, with x = nu, 

s " + l ( t ) + s n - l ( t )  = 2S(x, t ) +  a2 dZS(x, t ) /ax2+O(a4) .  (2.7) 

J-+I+;U~J t + t/a2 (2.8) 

If we then make the replacements 
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in ( 2 . 5 ) ,  where I denotes the 3 x 3 unit matrix, and take the (continuum) limit a + 0, 
use of (2.7) results in the partial differential equation 

a s / a t = s x J ~ + s x a ' S / a x '  (2.9) 

for the spin field S(x, t ) .  
Equation (2.9) was first derived phenomenologically by Landau and Lifshitz (1935) 

and has subsequently been rederived by various people. It formed the basis, for 
example, for the so-called semiclassical theory of spin waves due to Herring and Kittel 
(1951). 

In the isotropic case J = I, where the first term in (2.9) vanishes, Lakshmanan et a1 
(1976) showed that the spin-wave solution 

(2.10) 

where {a,  b, c }  is a right-handed set of orthogonal unit vectors (see figure l ) ,  cp is 
constant and 

S(x, t )  = { a  cos 8 + b sin e} cos cp + c sin cp 

e ( x ,  t )  = P X  - U t  w = p 2  sin cp (2.11) 

is the most general 
function only of the 

solution of the isotropic equation (2.9), assuming S ( x ,  t )  is a 
single variable U = px - wt. 

Figure 1. Angular coordinates for spin S = S(x, I )  or S,,( t ) .  

They also exhibited a particular solitary wave solution given in the form of equation 
(2.10) with 

sin p ( x ,  t )  = [tanh i c ( x  - cr)]' e ( x ,  t )  = tan-'[tanh f c ( x  - c t ) ]  +icx. (2.12) 

Various soliton solutions were obtained by Tjon and  Wright (1977) and others, 
and the isotropic continuum equations were subsequently shown by Lakshmanan 
(1977) and Takhtajan (1977) to be completely integrable, in the sense that there is an  
infinite number of constants of motion in involution. 

Further references can be found in Sklyanin (1979) where it is shown that the 
anisotropic equation (2.9) is also completely integrable. There it is also shown that in 
certain limiting cases (2.9) reduces to the SG and NLS equations. These limiting cases 
are also discussed in Quispel and  Capel (1982) where some reductions of the equations 
of motion for both the discrete chain (2.5) and  the continuum chain (2.9) are given. 
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3. Particular exact solutions of the discrete equations 

Here we present some exact analytical solutions of the evolution equations (2 .5 )  for 
the discrete anisotropic chain. 

3.1. Spin-wave solutions 

In the isotropic case of (2.5) 

d S , / d t = S ,  X(Sn+l+Sn-l) 

it is easily verified that the spin waves 

S,(  t )  = { U  cos 8, + b sin e,} cos cp + c sin cp 

form an exact solution when cp is constant and  

(3.1) 

(3.2) 

6,  ( t )  = pn - wt  w = 2( 1 -cos p )  sin cp. (3.3) 

It is easy to check that these solutions go over to the continuum spin-wave solutions 
given by (2.10) and (2.11) by replacing p - p a ,  w + w / a '  (or t -*  f l u ' )  and ailowing a 
to approach zero. Unlike the continuum isotropic case, however, it is almost certain 
that the above spin-wave solutions of the discrete equations are not the most general 
solutions of the form S,, = S (  pn -u t ) .  

In  addition it is easily verified that the spin waves given by (3.2) form an exact 
solution of the anisotropic equations (2 .5)  for the particular case CY = p, where en is 
given by equation (3.3) but with w = 2( y - p cos p )  sin cp. 

These solutions describe the precessional motion of each spin about the c axis. 

3.2. Spatially homogeneous solutions 

(3.4) 
is independent of n, (2.5) reduce to the equations 

dS l /d t  = 2( y - p)S,S, d S , / d t = 2 ( a  -y)SIS3 dS3/d t = 2( /3 - CY )SI S, . 
(3.5) 

Equations (3.5) are equivalent to the equations of motion of a force-free rigid body 
(Poinsot's motion)-see Cabannes (1968) and Goldstein (1950). The spin S (  t )  moves 
on the intersection of the unit sphere defined by the length integral and the quadric 
surface defined by the energy integral (2.1) with the n dependence removed. The 
motion is generally a precession about one of the axes with nutation. 

Because of the two integrals in SI ,  S, and S,, (3.5) can be integrated completely 
in terms of elliptic functions. The exact solution is given by 

where cn, sn 

S , ( t ) = c o s  cp cn(wt+6)  

Sz ( t )= (cosZcp+k2s in2  ( ~ ) " ~ s n ( o t + 6 )  (3.6) 

S,(t)  = sin (o dn(wt + 6) 

and dn are Jacobi elliptic functions, with modulus k, defined by 

~ = ~ ~ 5 n u [ ( ~ - t 2 ) ( l - k ~ ~ 2 ) ] - ' ~ 2 d t  (3.7)  
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etc, and satisfying 

cn‘ x +  sn’ x = dn’ x i  k’ sn’ x = 1 (3.8) 
and  cp, w ,  k and 6 are constants. 

Direct substitution of (3.6) into (3.5) and use of ( d l d x )  sn x = cn x dn x, etc, shows 
that (3.5) are satisfied identically provided three equations are satisfied for the three 
‘unknowns’ cp, w and k with arbitrary phase factor 6. In view of the identities (3.8), 
it is to be noted that, with the choice of prefactors in (3.6), S ( t )  has unit length for 
all cp, w,  k, 6 and t .  

Unfortunately the above solution does not distinguish discrete from continuous. 
In other words, (3.5), apart from factors of two, are obtained from the continuum 
Landau-Lifshitz equation (2.9) by assuming S(x, t )  is independent of x. Nevertheless, 
the elliptic function form of Poinsot’s solution leads more or less straightforwardly to 
exact solutions of the planar form of the equations. 

3.3. Planar solutions 

If we look for planar solutions of (2.5) with S,,3( t )  = 0 for all t and n, it is not difficult 
to show that the only such solutions are stationary solutions, S , , r (  t )  = S,,,, i = 1,2 ,  
independent of t ,  and satisfying 

~ S , . 2 ( S n + l , I + S n - l . I )  =PS,,.r(Sn+,,r+Sn-l,’) (3.9) 
with 

S ; , l+S; ,2=1.  (3.10) 

These equations were studied numerically by Thompson et a1 (1985) and the 
solutions shown to be ‘chaotic’ in the sense that, for almost all initial conditions, the 
solutions are aperiodic. ‘Chaotic’ was an  unfortunate choice of word in this case since 
there is not the ‘sensitive dependence on initial conditions’ required of truly chaotic, 
as opposed to simply aperiodic, behaviour. Moreover, as we will see in a moment, it 
is not difficult to show that solutions of (3.9) and (3.10) lie on continuous invariant 
curves in the S ,  phase plane. 

Thus if we multiply (3.9) on both sides by (Sn+l , l  - S n - l , l )  and use (3.10) it easily 
follows that either 

S,,+l,Z = -Sn-1.2 (3.11) 

or 

a S n , 2 ( S n - 1 . 2 -  Sn,l,J = PS,, I ( S n + l . l  - Sn-1.1) 

which, on rearranging and  iterating, implies that 

sn.1Sn71.1 + A S n . z s n + ~ , ~ =  C (3.12) 

More generally, it is not difficult to show that arbitrary stationary states of (2.5), 

(3.13) 
admit constants of the motion of the form (3.12). Thus if we take the vector product 
on both sides of (3.13) with J-’(Sn+l - S n - , )  it easily follows that either = -Sn-l, 
corresponding to a flip of every second spin, or 

J-’S,,+, S,, =constant. (3.14) 

where A = cx/P and C is a constant. 

i.e. solutions satisfying 

Sn X J(S,, I + S,, - I )  = 0 
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The set of constants (3.12) for planar states was found independently by Granovskii 
and Zhedanov (1986) and more general methods for integrating stationary states of 
discrete dynamical systems have been given recently by Quispel et a1 (1988a, b) .  

As mentioned above, equations (3.9) for planar states and their invariant curves 
(3.12) can be integrated completely by an elliptic substitution. The results, also found 
independently by Granovskii and Zhedanov (1986), are as follows. 

By symmetry we can assume that the anisotropy parameter A = a/@ is in the interval 
(0 ,  1). For given O <  h < 1 and initial conditions such that C in (3.12) satisfies A > C, 
the solution of (3.9) is given by 

S,,, = cn( pn + 6)  S,,, = sn( pn + 6 )  (3.15) 

where 6 is arbitrary, p is such that 

d n p = A  (3.16) 

and the modulus k of the elliptic functions is given by 

k 2 =  (1 -A2)(1 - C 2 ) - ’ .  (3.17) 

On the other hand, when A < C < 1 we have the solutions 

S, , ’  = d n ( p n + 6 )  S, , ,2= k s n ( p n + S )  (3.18) 

where p is such that 

c n p = A  (3.19) 

and the modulus is given by 

k’= (1 - Cz)( 1 - A ’ ) - ’ .  (3.20) 

The above solutions cover all possible choices of initial conditions and moreover 
the invariant curves (3.12) fill the phase space IS,,, ,IS 1, ISntl, I I  S 1 densely. In this 
sense (3.9) for planar states are completely integrable. 

Notice that since s n x  and c n x  have period 4 K ( k )  where K ( k )  is the complete 
elliptic integral of the first kind defined by 

(3.21) 

we have periodic (point) solutions or cycles when there exist relatively prime integers 
n, and n, such that 

p = 4 K ( k ) n l / n , .  (3.22) 

In other words, from (3.16) and (3.19), for given A we have cycles of length N ( A )  when 

A = dn[4K(k)/  N ( h  ) ]  or A = c n [ 4 K ( k ) / N ( h ) ]  (3.23) 

in accordance with the numerical solutions of Thompson et a1 (1985). 

4. Linear stability analysis 

As observed by Thompson et a1 (1985) the behaviour of the planar solutions can be 
understood quite well by studying the corresponding linearised equations. Here we 
investigate the linearised stability of (2.5) from initial states that are close to planar. 
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For convenience we choose a polar representation for the spins in terms of angles 
e,( t )  and q,( t )  shown in figure 1, i.e. 

S,( t )  = { a  cos 8, + b sin e,,} cos qn + c sin qn. (4.1) 
The set of non-linear differential-difference equations (2.5) in terms of 0, and qn 

is given by 

d8,ldt  = a(cos cos q, - l+cos entl  cos (P,,+~) tan q,, cos On 

+@(sin cos  sin O n t l  cos qn+,) tan qn sin 8, 

- ?(sin qn- l  +sin v,+,) 
and 

dq, /dt  = -CY(COS O n - ,  cos qn-l +cos Onrl cos qntl) sin 8, 

(4.2) 

+@(sin cos q,-l+sin On+, cos qntl) cos 0,. (4.3) 
The planar solutions studied in the previous section correspond to q,, = 0 in (4.2) 

and (4.3). Here we consider the above equations linearised about the trivial stationary 
solution 8, = q n  = 0. Thus, if we expand the right-hand sides of (4.2) and (4.3) about 
this point, and retain only linear terms, we arrive at the simple linearised equations 

(4.4) 

e,_1 - 2 ~ e ,  + e,,+l = o ( A  = C Y / @ )  (4.5) 

e,, = el  cos(n -  CY when A = C O S  CY (4.6) 

den/dt = - ~n - 1  + 2 a q n  - Y q n T  1 dq,/dt  =@e,-, - 2 ~ ~ 0 ,  + @ O n + ,  . 
The linearised planar equations, with qn = 0, are 

with particular solutions 

matching extremely well with the exact planar solutions discussed in the previous 
section for small initial O 1  (and e?) .  

The linearised time-dependent equations (4.4) can be expressed in matrix form: 

dx,/dt = bx,-, +ax, + bx,+l (4.7) 
where 

If we then assume, for simplicity, that we have a periodic chain of N spins ( x , , ~  = x,), 
(4.7) can be expressed in circulant N x N matrix form with 2 x 2 entries a on the main 
diagonal and entries b on the two nearest-neighbour diagonals. 

In this case the solution of (4.7) is easily found to be 
Y v 

x, ( t )=  1 exp(D,t)N-'  1 xp(0 )  c o s ( 2 ~ k / N ) ( p - n )  (4.9) 
k = l  p = 1  

where 

D,=(  "!'> 
-2v, 0 (4.10) 

and 

U, = CY - y COS( 2 .irk/ N)  V, = CY - @  C O S ( ~ T ~ /  N) .  (4.11) 
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The important point to recognise here is that the linearised equations are (locally) 
unstable if one of the eigenvalues z : ~ ( - U ~ V , ) ” ~  of Dk for any k is positive, i.e. if U, 
and V, have opposite sign for any k. The linearised equations are also unstable if just 
one of U, or vh is zero for any k,  leading to a repeated 0 eigenvalue. Otherwise the 
eigenvalues of Dh are pure imaginary for all k and the system is neutrally stable, i.e. 
the x,( t )  given by (4.9) are linear combinations of (bounded) oscillatory solutions of 
(4.7). 

The situation is summarised in the cross section of the ( a ,  p, y )  parameter space 
in figure 2, i.e. for fixed a, the linearised system is neutrally stable in the square lyi < (a1 
and IpI < la( and on the line y = p for all chain lengths N, and on the square boundaries 
y = -a and /3 = -a for odd values of N. For all other parameter values the linearised 
system is unstable for most N. In particular, in the exterior of the square, excluding 
the line y = p, we can definitely say that the zero solution of the non-linear system is 
also unstable for most N. The neighbourhood of the origin in these systems thus 
becomes a prime candidate for possible chaotic behaviour. 

Some numerical and  analytic results given in the following section support the 
claim that the discrete Heisenberg chain does, in fact, have chaotic solutions in some 
regions of parameter and  phase space. 

Y T  

Figure 2. Shaded area and the full and  broken lines indicating the region of linearised 
stability for the case where cy is positive. 

5. Regular and chaotic solutions of the non-linear problem 

It is clear from the analysis of the previous section that, unless one excites one or  a 
small number of periodic neutrally stable modes of the linearised system, it will be 
virtually impossible to distinguish numerically between regular and chaotic behaviour 
of the corresponding non-linear system, particularly if the periods of the underlying 
locally stable modes are incommensurate. This is certainly borne out by numerical 
studies of the non-linear equations for periodic chains consisting of small numbers of 
spins. Some typical results are shown in figure 3 for parameter values where the 
linearised equations are neutrally stable and locally unstable. 
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I 
33 

103 

-03 
Figure 3. Numerical solutions of non-linear equations (4.2) and (4 .3)  for a short chain 
( N  = 1 7 ) .  Shown is the motion of a typical spin in the two cases where the linearised 
system is ( a )  stable ( a  = 1.0, p =0.3, y = -0.87) and ( b )  unstable ( a  = 1.0, p = -1.1, y = 
-0.87). The initial condition in both cases is the same and close to the zero stationary 
so I u t i o n . 

The best evidence we have for chaotic behaviour of the non-linear discrete system 
is the spatial chaos found from the study of the non-linear equations (4.2) and (4.3) 
for the case a = /3 and On = e(  t ) ,  independent of n. In this case (4.3) implies dq,,/dt = 0 
and equation (4.2) reduces to 
(dO/dt) COS (P,, = a ( c o s  ~ p , ~ ~ + c o s  cpntl) sin cp,, - y(sin cp,-,+sin cpnTl) cos (P,,. (5.1) 
It follows that we must have e(  t )  = wt + 6 and the condition 
w cos (P,, = &(cos pn-, +cos (P,,+]) sin pn - y(sin q,,-] +sin q,+,) cos q,,. (5.2) 
Equation (5.2) can be regarded as a mapping in the (cp,, qntl) plane. It can be recast 
in the symmetric form 

(5.3) sin(Po,+ 1 -f( q n  1) = -sin(cp, - 1  - f  ( P n  1) - wg( pn ) 
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where 

and 
p(cp,,) = ( a 2  sin’ cpn + y 2  cos’ cp,,)”’. (5.5) 

Mappings of the form (5.3) and their properties (with a different g(cp,)) were discussed 
in Belobrov et a1 (1984) in connection with the equilibrium structures of a planar 
Heisenberg chain in the presence of an  external field. 

When w = O  the mapping (5.3)-(5.5) reduces to 

( P ~ + ~ + ( P ~ - ,  = 2 t a n - ’ ( K  tan 9,) (5.6) 
where K = a /  y. This is the angular form of the integrable mapping (3.9) and (3.10) 
which has only periodic or  quasiperiodic behaviour. 

When w # 0 then the whole phase space -T < (F,-~ S T,  -T < cp, S n is not available 
to the mapping (5.3) on account of the existence of so-called forbidden regions. These 
regions comprise those points ( v , - ~ ,  9,) which make the right-hand side of (5.3) fall 
outside the range [-1,1] and  so make the calculation of the next point impossible. 
Trajectories with initial conditions (cpo, c p l )  which escape at some iteration to a forbid- 
den region become invalid. 

For the case w # 0 and  for the isotropic chain a = p = y, equations (5.3)-(5.5) 
become 

sin(c~n-1- cpn)  = sin(Po, - c p n - 1 )  - (U/ a 1 COS ( ~ n  (5.7) 
which has been studied by Slot (1982) and, more recently, by Ananthakrishna er al 
(1987) where it was shown to have chaotic trajectories for certain initial spin values 
(p0, c p l )  and a range of the parameter l w / a l .  

In the most general case of (5.3)-(5.5) with w # 0 and CY # y, we also find chaotic 
trajectories present in the (cp,, qntl) plane for some values of a, y and w and for some 
initial conditions. A typical example is shown in figures 4 and 5. These solutions 
correspond to solutions of the uniaxial ( a  = p )  chain which are periodic in t (with 
period 2 ~ / w  ) but the spin component amplitudes exhibit chaotic behaviour. 

Figure4. Phase portrait of the mapping ( 5 . 3 ) - ( 5 . 5 )  for a = p = -1.05, y = 1.0 a n d  w =0.55. 
The points ( - r r / 2 ,  r r / 2 )  and  ( r r / 2 ,  - x / 2 )  are  a 2-cycle of the mapping.  
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-05 

Figure 5. Enlargement of the area around the origin in figure 4 (note that the islands shown 
here are not drawn in figure 4). The bold dot is the hyperbolic fixed point at ‘po = 9, 5 

-0.1346. The single and double arrows indicate parts of two different curve trajectories. 
The chaotic trajectory is produced by iterating the point ‘po = 9 ,  = -0.15. 

The fact that some solutions of our equations exhibit chaotic behaviour does not, 
of course, rule out the possibility that in some other regions of phase space and 
parameter values our system is completely integrable. 

6. Conclusions 

In this paper we studied the evolution equations for the classical discrete anisotropic 
Heisenberg spin chain. We reviewed the situation in the continuum limit where the 
equations become completely integrable and in special limiting cases reduce to the 
well known sine-Gordon and non-linear Schrodinger equations. 

Some particular solutions of the discrete evolution equations were discussed includ- 
ing spin-wave solutions, spatially homogeneous solutions which reproduce Poinsot’s 
motion and planar solutions where the equations afford an example of a completely 
integrable mapping. 

A linear stability analysis of the discrete equations was performed which indicates 
the possibility of irregular or chaotic solutions. This was borne out by some numerical 
studies and some particular solutions which are periodic in time but with numerical 
indications of chaotic spin component amplitudes in small regions of phase space and 
parameter values. 

The question of integrability of the time-dependent non-planar equations in some 
region of phase space remains an open question. 
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